Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer

نویسندگان

  • Melanie Küspert
  • Alexander Hammer
  • Michael R. Bösl
  • Michael Wegner
چکیده

The HMG-domain transcription factor Sox10 is expressed throughout oligodendrocyte development and is an important component of the transcriptional regulatory network in these myelin-forming CNS glia. Of the known Sox10 regulatory regions, only the evolutionary conserved U2 enhancer in the distal 5'-flank of the Sox10 gene exhibits oligodendroglial activity. We found that U2 was active in oligodendrocyte precursors, but not in mature oligodendrocytes. U2 activity also did not mediate the initial Sox10 induction after specification arguing that Sox10 expression during oligodendroglial development depends on the activity of multiple regulatory regions. The oligodendroglial bHLH transcription factor Olig2, but not the closely related Olig1 efficiently activated the U2 enhancer. Olig2 bound U2 directly at several sites including a highly conserved one in the U2 core. Inactivation of this site abolished the oligodendroglial activity of U2 in vivo. In contrast to Olig2, the homeodomain transcription factor Nkx6.2 repressed U2 activity. Repression may involve recruitment of Nkx6.2 to U2 and inactivation of Olig2 and other activators by protein-protein interactions. Considering the selective expression of Nkx6.2 at the time of specification and in differentiated oligodendrocytes, Nkx6.2 may be involved in limiting U2 activity to the precursor stage during oligodendrocyte development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated In Vivo Levels of a Single Transcription Factor Directly Convert Satellite Glia into Oligodendrocyte-like Cells

Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcr...

متن کامل

Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes.

The oligodendrocyte lineage genes (Olig1/2), encoding basic helix-loop-helix transcription factors, were first identified in screens for master regulators of oligodendrocyte development. OLIG1 is important for differentiation of oligodendrocyte precursors into myelin-forming oligodendrocytes during development and is thought to play a crucial role in remyelination during multiple sclerosis. How...

متن کامل

Evidence for motoneuron lineage-specific regulation of Olig2 in the vertebrate neural tube.

Within the motoneuron precursor (pMN) domain of the developing spinal cord, the bHLH transcription factor, Olig2, plays critical roles in pattern formation and the generation of motor neuron and oligodendrocyte precursors. How are the multiple functions of Olig2 regulated? We have isolated a large BAC clone encompassing the human OLIG2 locus that rescues motor neuron and oligodendrocyte develop...

متن کامل

Brief Communication DNA Methylation Status of SOX10 Correlates with Its Downregulation and Oligodendrocyte Dysfunction in Schizophrenia

Downregulation of oligodendrocyte-related genes, referred to as oligodendrocyte dysfunction, in schizophrenia has been revealed by DNA microarray studies. Because oligodendrocyte-specific transcription factors regulate the differentiation of oligodendrocytes, genes encoding them are prime candidates for oligodendrocyte dysfunction in schizophrenia. We found that the cytosine– guanine dinucleoti...

متن کامل

DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia.

Downregulation of oligodendrocyte-related genes, referred to as oligodendrocyte dysfunction, in schizophrenia has been revealed by DNA microarray studies. Because oligodendrocyte-specific transcription factors regulate the differentiation of oligodendrocytes, genes encoding them are prime candidates for oligodendrocyte dysfunction in schizophrenia. We found that the cytosine-guanine dinucleotid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011